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The translation of results from animal to man is a key phase in oncology drug 

development. Being able to determine the doses at which to start taking key 

biopsy measurements and when we expect to start seeing efficacy are important 

for a successful evaluation of a new drug within early clinical development. 

Furthermore, being able to accurately translate combination schedules from 

mouse to man would provide significant cost savings and speed up clinical 

development times. 

Following from our companion poster (III-24), here we show two sets of results 

highlighting the translational predictivity of Virtual Tumour1 Clinical. The first 

example highlights the back-translational capabilities of the model for 

vemurafenib, where we train the model to clinical data2 and determine whether 

we can predict the outcome in xenografts studies3. The second example looks at 

using the model for forward translation: we train the model to preclinical 

monotherapy data4 only for docetaxel and selumetinib, and assess whether we 

can predict the efficacy of both arms of a recent phase II trial5 assessing the 

combination versus docetaxel monotherapy. 

Introduction 

The Virtual Tumour simulations and predictions can be used to design and 

simulate new, rational experiments by ranking combinations and dosing 

schedules in specific tumours. This allows researchers to eliminate unnecessary 

and redundant experiments/clinical studies, thus reducing the amount of animal 

and human studies. 

The Physiomics Virtual Tumour Technology 

The Virtual Tumour1 takes as input the following data sets: 
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Drug A 50mpk qdx21 

Drug B 60 mpk q3dx7 

Drug B 150 mpk q3dx4 

… 

PK time course in tumour/plasma 

Drug A 50mpk 

Drug B 60 mpk 

Preclinical mechanism of action data 

Biomarkers 

FACS data Selected literature data 
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Conclusions 

Stage 3 – Back Translation of Vemurafenib 

Clinical Data 

1. Vemurafenib2: 20 patients with a total of 69 lesions 

2. Phase II docetaxel/selumentinib v docetaxel/placebo5: ~ 40 patients with a 

total of ~100 lesions in each arm  

We demonstrated that Virtual Tumour Clinical can make accurate predictions 

of the mean change in lesion size over time for a phase II clinical study using 

preclinical PK/PD and clinical PK data. Furthermore, it should be noted that 

primary xenografts were not required for this study, highlighting the model’s 

potential to result in significant cost savings. The accurate predictions of the 

model demonstrate its capability for assisting drug development within the 

arena of translational science.   
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Results: model correctly predicts the xenograft response with potency 

estimates taken from the clinic. 

Vemurafenib 

960 mg BD 

Patients 

Results: model makes accurate quantitative forward-translational 

predictions for both arms of the study. 

Clinical study result5: ORR 32% docetaxel/selumetinib v 14% docetaxel 

(p = 0.059) 

 

  Literature data across numerous 

tumour types: 

• Size of viable cell pool 

• Ki67: % proliferating 

• Cleaved caspase 3: % apoptotic 

• Growth and decay rates of clinical 

tumours 

• Variability in durations of cell-cycle 

phases 

Step 1 – Analyse clinical data using 

population analysis approach (using a 

linear model) – see right panel 

FDA sourced PK model used 

Step 2 – Calibrate Virtual Tumour to 

the mean clinical signal (monotherapy) 

– see right panel 

Step 3 – Switch clinical growth settings 

for preclinical growth settings and 

calibrate preclinical model to control 

growth – see panel below 

 

Step 1 – Calibrate 

Virtual Tumor to both 

monotherapy and 

combination mean 

clinical signal – see 

right panel 

Step 2 – Switch 

preclinical growth 

settings and PK for 

clinical growth settings 

and PK6  

Step 3 – Predict 

preclinical 

monotherapy and 

combination effects  

Step 4 – Compare 

prediction with actual 

result – see below 

 

Step 4 – Swap clinical PK for 

preclinical PK and generate 

predictions of preclinical 

monotherapy effects 

Step 5 – Compare prediction with 

actual result – see panel below 
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Selumetinib 
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